An efficient compact quadratic convex reformulation for general integer quadratic programs
نویسندگان
چکیده
We address the exact solution of general integer quadratic programs with linear constraints. These programs constitute a particular case of mixed-integer quadratic programs for which we introduce in [3] a general solution method based on quadratic convex reformulation, that we called MIQCR. This reformulation consists in designing an equivalent quadratic program with a convex objective function. The problem reformulated by MIQCR has a relatively important size that penalizes its solution time. In this paper, we propose a convex reformulation less general than MIQCR because it is limited to the general integer case, but that has a significantly smaller size. We call this approach Compact Quadratic Convex Reformulation (CQCR). We evaluate CQCR from the computational point of view. We perform our experiments on instances of general integer quadratic programs with one equality constraint. We show that CQCR is much faster than MIQCR and than the general non-linear solver BARON [25] to solve these instances. Then, we consider the particular class of binary quadratic programs. We compare MIQCR and CQCR on instances of the Constrained Task Assignment Problem. These experiments show that CQCR can solve instances that MIQCR and other existing methods fail to solve.
منابع مشابه
Extending the QCR method to general mixed-integer programs
Let (MQP ) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we present a convex reformulation of (MQP ), i.e. we reformulate (MQP ) into an equivalent program, with a convex objective function. Such a reformulation can be solved by a standard solver that uses a branch and bound algorithm. We prove that ou...
متن کاملQuadratic Convex Reformulation : a Computational Study of the Graph Bisection Problem
Given an undirected graph G = (V,E), we consider the graph bisection problem, which consists in partitioning the nodes of G in two disjoined sets with p and n− p nodes respectively such that the total weight of edges crossing between subsets is minimal. We apply QCR to it, a general method, presented in [4], which combines semidefinite programming (SDP) and Mixed Integer Quadratic Programming (...
متن کاملConvex Quadratic Programming for Exact Solution of 0-1 Quadratic Programs
Let (QP ) be a 0-1 quadratic program which consists in minimizing a quadratic function subject to linear constraints. In this paper, we present a general method to solve (QP ) by reformulation of the problem into an equivalent 0-1 program with a convex quadratic objective function, followed by the use of a standard mixed integer quadratic programming solver. Our convexification method, which is...
متن کاملA compact variant of the QCR method for quadratically constrained quadratic 0-1 programs
Quadratic Convex Reformulation (QCR) is a technique that was originally proposed for quadratic 0-1 programs, and then extended to various other problems. It is used to convert non-convex instances into convex ones, in such a way that the bound obtained by solving the continuous relaxation of the reformulated instance is as strong as possible. In this paper, we focus on the case of quadratically...
متن کاملA Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 54 شماره
صفحات -
تاریخ انتشار 2013